Porting The Spectral Element
Community Atmosphere Model (CAM-SE)
To Hybrld GPU Platforms

. P ' ’ Matthew Norman : ORNL

Jeffrey Larkin : Cray
Richard Archibald : ORNL
. Valentine Anantharaj : ORNL
ol llene Carpenter : NREL

Paulius Micikevicius : Nvidia
Katherine Evans : ORNL

View.org/0902/images/esqg13.jpg

2012 Programming weather, climate, and earth-system models
on heterogeneous multi-core platforms

]

.S. DEPARTMENT OF

What is CAM-SE?

» Climate-scale atmospheric simulation for capability computing
« Comprised of (1) a dynamical core and (2) physics packages

2 0OLCF |20

What is CAM-SE?

» Climate-scale atmospheric simulation for capability computing
« Comprised of (1) a dynamical core and (2) physics packages
Dynamical Core

1. “Dynamics”. wind, energy, & mass
2. “Tracer” Transport: (H,O, CO,, O,, ...)

Transport quantities not advanced by the dynamics

http:/fesse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

3 OLCF |20

What is CAM-SE?

» Climate-scale atmospheric simulation for capability computing
« Comprised of (1) a dynamical core and (2) physics packages
Dynamical Core

1. “Dynamics”. wind, energy, & mass
2. “Tracer” Transport: (H,O, CO,, O,, ...)

Transport quantities not advanced by the dynamics

http://esse.engin.umich.edu/groups/admg/
demip/jablonowski_cubed_sphere_vorticity.png

Physics Packages

Resolve anything interesting not
included in dynamical core (moist
convection, radiation, chemistry, etc)

http://web.me.com/macWeather/blogger/maWeather_ﬁles/physprcz/ ghi JATX

4 OLCF|20

Gridding, Numerics, & Target Run

» Cubed-Sphere + Spectral Element
 Each cube panel divided into elements

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

5 OLCF |20

Gridding, Numerics, & Target Run

» Cubed-Sphere + Spectral Element
 Each cube panel divided into elements
 Elements spanned by basis functions

Sm
O O
http://www-personal.umich.edu/~paullric/A_CubedSphere.png © O . ©
® - —

6 OLCF |20

7

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

OLCF

20

» Cubed-Sphere + Spectral Element
 Each cube panel divided into elements
 Elements spanned by basis functions
« Basis coefficients describe the fluid

Gridding, Numerics, & Target Run

» Cubed-Sphere + Spectral Element
 Each cube panel divided into elements
 Elements spanned by basis functions
« Basis coefficients describe the fluid

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

Used CUDA FORTRAN from PGI
OACC Directives: Better software engineering option moving forward

s OLCF|20

Target 14km Simulations

* 16 billion degrees of freedom

9 AaLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels

10 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel

11 AQLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element

12 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element
— 26 vertical levels

13 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel 0, PuU, Pv, p
— 4 x 4 basis functions per element

— 26 vertical levels H,O,6Co,,0O,,CH,,..
— 110 prognostic variables

4 OLCF | 20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element
— 26 vertical levels
— 110 prognostic variables
 Scaled to 14,400 XT5 nodes with 60% parallel efficiency

15 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element
— 26 vertical levels
— 110 prognostic variables
 Scaled to 14,400 XT5 nodes with 60% parallel efficiency
« Must simulate 1-2 thousand times faster than real time
 With 10 second CAM-SE time step, need < 10 ms per time step
— 32-64 columns of elements per node, 5-10 thousand nodes

16 AOLCF |20

CAM-SE Profile (Cray XT5, 14K Nodes)

* Original CAM-SE used 3 tracers (20% difficult to port)
* Mozart chemistry provides 106 tracers (7% difficult to port)

— Centralizes port to tracers with mostly data-parallel routines

3-Tracer CAM-SE 106-Tracer CAM-SE

Other Physics Other
4% 6% 1%

Tracers
7%

7 OLCF| 20 ~EIDcE

Communication Between Elements
/ Process O K Process 1 \

18 AOLCF |20

Communication Between Elements

/ Process O > / Process 1 \

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

19 AOLCF |20

Communication Between Elements

20

/ Process O D Process 1 \

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

OLCF |20

Implementation

Edge_pack: pack all element edges
into process-wide buffer. Data sent
over MPI are contiguous in buffer.

Bndry_exchange: Send & receive
data at domain decomposition
boundaries

Edge_unpack: Perform a weighted
sum for data at all element edges.

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

21 OLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

Cycle 1

22 OLCF |20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack

23 OLCF | 20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles”
* Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

24 OLCF |20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

25 AOLCF | 20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

26 OLCF | 20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

27 OLCF | 20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

28 OLCF | 20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

29 OLCF | 20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

30 AOLCF | 20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

31 ALCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

32 AOLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
« MPI_Isend the cycle
— For each “receive cycle”
« MPI_Wait for the data
« Send cycle over PCl-e (H2D)
— Unpack all edges in a GPU Kernel

3 OLCF|20

Optimizing Pack/Exchange/Unpack

 Fora cycle, PCl-e D2H depends only on packing that cycle

— Divide edge_pack into equal-sized cycles
1. Find only the elements directly involved in each separate cycle
2. Evenly divide remaining elements among the cycles

— Associate each cycle with a unique CUDA stream

— Launch each pack in its stream

— After a cycle is packed, call async. PCl-e D2H in its Stream
 Edge_unpack at MPI boundaries requires all MPI to be finished
» However, internal unpacks can be done directly after packing

3 OLCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

35 AOLCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

36 OLCF |20 f"i:_"j;’r;i

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

37 OLCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

33.0LCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

39 OLCF | 20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

40 OLCF |20

Porting Strategy: Pack/Exchange/Unpack

* Prepost each cycle’s MPI_irecv

* While an MPI message remains pending
— If all cycles finished packing (cudaEventQuery for all cycles’ pack)
» Launch edge_unpack kernel over elements not dealing with MP|
— For each cycle
« If cycle finished packing (cudaEventQuery for the cycle’s pack)
— Call async. PCl-e D2H copy for the cycle’s MPI data
— Call cudaEventRecord for a PCl-e D2H event
* If cycle finished D2H PCl-e (cudaEventQuery for the cycle’s D2H)
— Call MPI_Isend for the cycle’s MPI data
« |[f MPI data has been received (MPI_Test for the cycle’s transfer)
— Call PCl-e H2D copy for the cycle’s MPI data

 (Call a device-wide barrier to ensure PCl-e H2D copies are done
 Unpack elements dealing with MPI

4 OLCF|20

Resulting Concurrency

|
o TR T T T T T
Lo — b

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

42 0OLCF |20

Resulting Concurrency

GPU Kernels

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

N TR T T T T T Ty
" —— o o

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

43 0OLCF | 20

Resulting Concurrency

GPU Kernels
PCl-e D2H

[
it W B l' l!"v l‘_ll.l,.l

L . s

L — b/

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

4 0OLCF | 20

Resulting Concurrency

GPU Kernels
PCl-e D2H
PCl-e H2D

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

......

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

45 0OLCF |20

Resulting Concurrency

GPU Kernels
PCl-e D2H
PCl-e H2D

MPI

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

46 OLCF |20

Resulting Concurrency

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

http://regmedia.co.uk/2011/05/22/cray-xk6isuper-blade.jpg

.....

47 OLCF |20

GPU Kernels
PCl-e D2H
PCl-e H2D

MPI
Host Computation

Other Important Porting Considerations

* Memory coalescing in kernels
— Know how threads are accessing GPU DRAM, rethread if necessary

Use of shared memory

— Load data from DRAM to shared memory (coallesced)
— Reuse as often as possible before re-accessing DRAM
— Watch out for banking conflicts

Overlapping kernels, CPU, PCl-e, & MPI
— Perform independent CPU code during GPU kernels, PCl-e, & MPI
— Break up & stage computations to overlap PCl-e, MPI, & GPU kernels

PCI-e copies: consolidate if small, break up & pipeline if large

« GPU’s user-managed cache made memory optimizations that
are more difficult on a non-managed cache

4 OLCF|20

Usefulness Of Porting To Accelerators

* You understand your code’s challenges for many threads

* You will often refactor the algorithms themselves
— Vertical remap: splines + summation -> PPM + two integrations
— More flops, but more independence and less data movement
* You will change the way you thread
— Higher-level hoisting of OpenMP to allow more parallelism
— More data-independent work, more flops
— Better staging through cache, less data in cache (less thrashing)

* Incorporating changes into CPU code almost always
speeds up the CPU code

— This changes perspective on code refactoring cost-benefit

49 OLCF|20

Speed-Up: Fermi GPU vs 1 Interlagos / Node

 Benchmarks performed on XK6 using end-to-end wall timers
* All PCl-e and MPI communication included

50 OLCF| 20 peiiic:

Questions?

51 LCF | 20

